Oxidized low-density lipoprotein stimulates macrophage 18F-FDG uptake via hypoxia-inducible factor-1α activation through Nox2-dependent reactive oxygen species generation.

نویسندگان

  • Su Jin Lee
  • Cung Hoa Thien Quach
  • Kyung-Ho Jung
  • Jin-Young Paik
  • Jin Hee Lee
  • Jin Won Park
  • Kyung-Han Lee
چکیده

UNLABELLED For (18)F-FDG PET to be widely used to monitor atherosclerosis progression and therapeutic response, it is crucial to better understand how macrophage glucose metabolism is influenced by the atherosclerotic microenvironment and to elucidate the molecular mechanisms of this response. Oxidized low-density lipoprotein (oxLDL) is a key player in atherosclerotic inflammation that promotes macrophage recruitment, activation, and foam cell formation. We thus explored the effect of oxLDL on macrophage (18)F-FDG uptake and investigated the underlying molecular mechanism including the roles of hypoxia-inducible factor-1α (HIF-1α) and reactive oxygen species (ROS). METHODS RAW264.7 macrophages were stimulated with native LDL, oxLDL, or lipopolysaccharide. Cells were assessed for (18)F-FDG uptake, lactate production, membrane glucose transporter 1 (GLUT1) expression, and hexokinase activity. ROS generation, Nox expression, and HIF-1α activity were also measured. RESULTS oxLDL (20 μg/mL) induced a 17.5 ± 1.7-fold increase in macrophage (18)F-FDG uptake by 24 h, which was accompanied by increased lactate production, membrane GLUT1 expression, and hexokinase activity. oxLDL-stimulated (18)F-FDG uptake was completely blocked by inhibitors of Src or phosphoinositide 3-kinase. ROS generation was increased to 262.4% ± 17.9% of controls by oxLDL, and N-acetyl-l-cysteine completely abrogated both oxLDL-induced ROS production and (18)F-FDG uptake. oxLDL increased Nox2 expression, and nicotinamide adenine dinucleotide phosphate oxidase inhibition totally blocked increased ROS generation and (18)F-FDG uptake by oxLDL. Finally, there was a clear ROS-dependent increase of HIF-1α accumulation by oxLDL, and silencing of HIF-1α completely abolished the metabolic effect of oxLDL. CONCLUSION oxLDL is a strong stimulator of macrophage (18)F-FDG uptake and glycolysis through upregulation of GLUT1 and hexokinase. This metabolic response is mediated by Nox2-dependent ROS generation that promotes HIF-1α activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidized Low-Density Lipoprotein Stimulates Macrophage 18F-FDG Uptake via Hypoxia-Inducible Factor-1a Activation Through Nox2-Dependent Reactive Oxygen Species Generation

For 18F-FDG PET to be widely used to monitor atherosclerosis progression and therapeutic response, it is crucial to better understand how macrophage glucose metabolism is influenced by the atherosclerotic microenvironment and to elucidate the molecular mechanisms of this response. Oxidized low-density lipoprotein (oxLDL) is a key player in atherosclerotic inflammation that promotes macrophage r...

متن کامل

HIF-1α Activation by Intermittent Hypoxia Requires NADPH Oxidase Stimulation by Xanthine Oxidase

Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1α synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH acti...

متن کامل

Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade.

Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained g...

متن کامل

Uptake of [18F] EF5 as a Tracer for Hypoxic and Aggressive Phenotype in Experimental Head and Neck Squamous Cell Carcinoma1

PURPOSE This study aims to investigate whether the uptake of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide ([18F]EF5) and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) is associated with a hypoxia-driven adverse phenotype in head and neck squamous cell carcinoma cell lines and tumor xenografts. METHODS Xenografts were imaged in vivo, and tumor sections were stained for h...

متن کامل

Pii: S0955-0674(00)00194-0

Hypoxia-inducible factor 1 (HIF-1) is an oxygen-regulated transcriptional activator that plays essential roles in mammalian development, physiology and disease pathogenesis. The HIF-1α subunit is subjected to oxygen-dependent ubiquitination and proteasomal degradation that is mediated by the von Hippel-Lindau protein. Interaction of HIF-1α transactivation domains with coactivators is induced by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 55 10  شماره 

صفحات  -

تاریخ انتشار 2014